European Experience on Managing African Swine Fever

Grzegorz Woźniakowski, PhD, ScD, Associate Professor
Head of Department of Swine Diseases
NATIONAL VETERINARY RESEARCH INSTITUTE IN PULAWY, POLAND
NVRI location – 7500 km away...
National Reference Laboratory for African swine fever
African swine fever (ASF)

- Infectious, low contagious disease of domestic pigs and wild boars.
- Aetiological agent – ASFV – unique member of the Asfarviridae family.
- Currently in Europe only genotype II.
- ASFV strains circulating in Poland and other Baltic states share 99 - 100% similarity with Georgia/2007 (Frączyk et al. 2016)
At the moment of ASF emergence in wild boar population NOBODY expected the possible spread of the disease in wildlife
If we do not manage to fight with ASF, it’s not because of lack of knowledge...
Transmission

Direct

Indirect

Biological Vectors

Origin of most outbreaks
Until now

Only influenced in Local
SPREAD
Outdoor productions

ASF is NOT a very transmissible disease
Less than: FMD, PRRS, CSF…
But it goes everywhere
Why ASF spreads in EU so rapidly?

Because of the high density of wild boar in the EU

Bosch et al., 2016
Wild boar different habitats – from pure nature to urban zone
Wild boar movements

- WB normally small home ranges ($5-8 \text{ km}^2$)
- Mostly sedentary
- Disrupted by food availability or disturbance

1 hour resolution movements of a tracked wild boar sow in Bulgaria
The importance of living and dead wild boar in ASF spread

- An infected animal is only a few days infectious before dying
- Carcasses of infected animals may stay infectious for weeks/month
- For successful infection a susceptible animal has to be in direct contact with a carcass or a sick animal
African swine fever virus (ASFV)

- very resistant to environmental factors

Persistence:

- 399 days in Parma ham
- 180 days in bone marrow
- 18 months in pig blood at 4°C
- 11 days in faeces at 20°C
- At least 20 days in decomposed carcass of wild boar
the vaccine accessibility within few years is not likely because:

• the ASF can be eliminated only by the administrative EU regulations (stamping out, protective and surveillance zone introduction),

• after infection/vaccination no neutralizing antibodies are produced,

USDA gives Zoetis the opportunity to seek licensure for African Swine Fever Virus

October 16, 2018

Zoetis has applied to license a vaccine candidate, and USDA has given Zoetis the opportunity to develop an ASF vaccine and seek licensure for it in the future.

African swine fever was recognized as a significant transboundary threat years ago. The Zoetis Center for Transboundary and Emerging Diseases team has been engaged in working towards a solution, and the development of a vaccine with the USDA is one of them.
ASF historical distribution

Source: OIE
ASF in 2018: EU and China

<table>
<thead>
<tr>
<th>ADNS DATA up to 17/09/2018</th>
<th>wild boar in 2017</th>
<th>wild boar in 2018</th>
<th>domestic pigs 2017</th>
<th>domestic pigs 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLAND</td>
<td>741</td>
<td>2042</td>
<td>81</td>
<td>109</td>
</tr>
<tr>
<td>LITHUANIA</td>
<td>1328</td>
<td>1295</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>LATVIA</td>
<td>947</td>
<td>591</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>ESTONIA</td>
<td>637</td>
<td>200</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>202</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>0</td>
<td>83</td>
<td>2</td>
<td>1061</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BULGARIA</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHINA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52?</td>
</tr>
</tbody>
</table>
ASF in 2018: ESTONIA

• 200 cases in wild boar
• no outbreaks in pigs
Estonia – disposal of wild boar carcass
ASF in 2018: LITHUANIA

<table>
<thead>
<tr>
<th>No of pigs in farm</th>
<th>No of outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>934-944</td>
<td>2</td>
</tr>
<tr>
<td>230</td>
<td>1</td>
</tr>
<tr>
<td>12-43</td>
<td>6</td>
</tr>
<tr>
<td>1-9</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

- 1295 cases in wild boar
Lithuania - largest ASF outbreak in 2018

ADNS No.41, 06/08/2018

- Farm with 20171 pigs kept;
- Within 3 days 24 fattening pigs died in one stable. Random 12 samples were taken from dead pigs and delivered for testing.
- ASF was confirmed using RT-PCR in 11 out of 12 tested dead pigs;
ASF in 2018: LATVIA

<table>
<thead>
<tr>
<th>No of pigs in farm</th>
<th>No of outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>1</td>
</tr>
<tr>
<td>20-27</td>
<td>2</td>
</tr>
<tr>
<td>11-16</td>
<td>2</td>
</tr>
<tr>
<td>4-5</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

- 591 cases in wild boar
ASF in 2018: CZECH REPUBLIC

- ASF cases in wild boar in 2018 – 28
- Last case – 19/04/2018! – effective ASF eradication?
The virus was identified for the first time in wild boar found dead close to the Hospital of Zlin city. The probable source of infection were wastes (raw pork meat - SALO) brought to the hospital by Ukrainian workers.
ASF in Czech Republic

http://www.africkymorprasat.cz
ASF in 2018: ROMANIA

- recent outbreak in Galati – 70 km "jump" or coming from over a border

- less than 20 km from Bulgarian border
ASF in 2018: HUNGARY

Identified at 24/04/2018 in dead wild boar within Heves district, then a wave of cases at Szabolc-Szatmár-Beerg district close to Romanian border.

So far 41 cases
The first ASF case in Hungary in wild boar

- A dead wild boar was found around the locality of Gyöngyös (Heves county) on 19 April.
- Sample was taken and sent to the NRL (Veterinary Diagnostic Directorate of National Food Chain Safety Office, Budapest)
- ASF virus presence was confirmed on 21 April by PCR test
- National Disease Control Centre (NDCC) was set up on 23 April.
- Possible source of the infection was waste from pork product illegally imported by workers from neighbouring countries.
ASF in 2018: BULGARIA
1 outbreak in backyard holding of pigs – possible source – Romania?,
2 cases in wild boars – 20 km wide protective zones!
Hunting and wild boar surveillance and control

• Development of a software/app for hunters; the results from *Trichinella* testing will be provided only if an ASF sample is also submitted;

• Ban on trade of wild boar into the territory of Bulgaria;

• Trainings of hunters on epidemiology, sampling and enhanced biosecurity measures;

• Building of dedicated pits for WB carcasses and ABPs disposal in hunting grounds;

• Enforced passive surveillance in WB

• Individual hinting all over the year.
First case of ASF in dead wild boar 13/09/2018 close to border with France. Possible source – illegally hunted wild boar transfer? Nearest ASF case in Zlin, Czech Republic – 1000 km away from this event.
Wild boar density
Measures taken

Infected zone was established (630 km²)

confirmed by Commission Implementing Decision (EU) 2018/1242 of 14 September 2018 concerning certain interim protective measures relating to African swine fever in Belgium

Competent authorities:

✓ Pigs and other kept animals: federal state
✓ Wild boar and other wild animals: regions

Coordination at all levels!
ASF in 2018: POLAND

<table>
<thead>
<tr>
<th>No of pigs in farm</th>
<th>No of outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-6000</td>
<td>7</td>
</tr>
<tr>
<td>100-700</td>
<td>15</td>
</tr>
<tr>
<td>10-90</td>
<td>55</td>
</tr>
<tr>
<td>1-9</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
</tr>
</tbody>
</table>

- 33 outbreaks in Chelmski district
- 20 outbreaks in Parczewski district
- 2042 cases in wild boar
Eight active ASF clusters in Poland – November, 2018.

In total until 12.11.2018
Almost 3000 ASF cases

Density of wild boar population
Huge concern – wild boars within towns and cities
- 6.2% area of Poland 19,389 square km – corn production

- buffer zone (2 square km) 215,679 km² (69% area of Poland)

- potential ecological corridors for WB
2018 – Routine procedures for ASF

Real-time PCR

Immunoperoxidase test

ELISA

Virus isolation
Surveillance programme – number of tested animals

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of wild boar tested</td>
<td>13 063</td>
<td>15 881</td>
<td>13 356</td>
<td>14 965</td>
<td>24 698</td>
<td>24 207</td>
<td>106 170</td>
</tr>
<tr>
<td>Number of pigs tested</td>
<td>2 124</td>
<td>23 629</td>
<td>15 092</td>
<td>85 580</td>
<td>179 139</td>
<td>359 475</td>
<td>665 039</td>
</tr>
</tbody>
</table>
Passive surveillance

Examination of WB found dead, killed in road accidents and animals showing clinical signs before hunting

<table>
<thead>
<tr>
<th>Year</th>
<th>Found dead</th>
<th>Car accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tested</td>
<td>+</td>
</tr>
<tr>
<td>2014</td>
<td>115</td>
<td>46</td>
</tr>
<tr>
<td>2015</td>
<td>130</td>
<td>67</td>
</tr>
<tr>
<td>2016</td>
<td>149</td>
<td>63</td>
</tr>
<tr>
<td>2017</td>
<td>1241</td>
<td>879</td>
</tr>
<tr>
<td>2018</td>
<td>2611</td>
<td>1991</td>
</tr>
</tbody>
</table>
Active surveillance – hunted wild boars

<table>
<thead>
<tr>
<th>Year</th>
<th>Tested</th>
<th>+</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>3387</td>
<td>14</td>
<td>0.41%</td>
</tr>
<tr>
<td>2016</td>
<td>4221</td>
<td>24</td>
<td>0.56%</td>
</tr>
<tr>
<td>2017</td>
<td>6015</td>
<td>117</td>
<td>1.95%</td>
</tr>
<tr>
<td>2018</td>
<td>4592</td>
<td>85</td>
<td>1.85%</td>
</tr>
</tbody>
</table>
Challenges to management – population size and disease control

Hunting methods

Driven hunt:
- effective
- disturbing
- non-selective
- ‘dirty’

Single hunt:
- time-intensive
- silent
- selective
- ‘clean’
Challenges to management – disease control

Offal and carcass disposal
Measures based on ASF biology

- Total ban of entry into the infected zone
- Electric and smell fencing (repelents)
- Active search and disposal of carcass
- Total ban of hunting within the infected zone
- Wild boar feeding
ASF outbreaks in Poland

Outbreaks 1. – 3. (STAGE I.)
as far as 9 km from the border

Outbreaks 4. – 23. (STAGE II.)
as far as 110 km from the border

Outbreaks 24. – 103. (STAGE III.)
25.11.2017 – 10.01.2018

Outbreaks 104. – 108. (STAGE IV.)
23.02.2018 – Outbreak 108. (630 pigs)

Outbreaks 109. – 213. (STAGE V.)
May 2018 – 20.09.2018
Clinical signs and lesions – nothing new
BIOSECURITY
- the only way of separation of ASF in wild boars from pigs
ASF prevention – awareness campaigns
Destruction of carcasses

• Burial
 o Peoples skills and knowledge
 o Environmental issues
 o Concerns of local people

Photos: www.postimees.ee
Stamping out

All pigs from holdings located in the radius of 10 km from ASFV case can be stamped out after risk assessment.

Stamping out are always applied to holdings located in the radius of 10 km from ASF outbreak.
19.07.2014

The owner (peasant) used grass feed from neighbourhood (close to the forest) to feed pigs; significant number of wild boar lived around.

The owner of holdings informed vet. about bad health condition of his animals as well as single pig death.

Laboratory confirmation of ASF – 21.07.2014.
Possible source of ASFV infection in pigs

<table>
<thead>
<tr>
<th>Outbreak</th>
<th>Number of days from the clinical signs onset to the ASF diagnosis</th>
<th>The most possible source of infection introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Wild boar</td>
</tr>
<tr>
<td>2</td>
<td>No data</td>
<td>Wild boar</td>
</tr>
<tr>
<td>3</td>
<td>No data</td>
<td>Pig swill</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Wild boar</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Pig swill</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Straw/bone</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>Illegal trade of infected pigs</td>
</tr>
<tr>
<td>8</td>
<td>No detailed information, probably few days</td>
<td>Illegal trade of infected pigs</td>
</tr>
<tr>
<td>9</td>
<td>No detailed information, probably few days</td>
<td>Illegal trade of infected pigs</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>Illegal trade of infected pigs</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>Pig swill</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>Illegal trade of infected pigs</td>
</tr>
</tbody>
</table>
It is unlikely that the grain, hay and straw were the source of ASFV capable of causing the (infectious) disease (EFSA, 2017).

However, the use of grass, straw and hay from the areas where ASF was confirmed in wild boar pose a potential threat of virus introduction into the pig farm.

Procedures should be implemented: inactivation of ASFV or storage for at least 30 days

Permit for use of straw from areas where ASFV occurs, only after virus inactivation or storage for at least 90 days (EFSA, EU 2017)
Other ASFV – insect vectors should be considered...

Survival and localization of African swine fever virus in stable flies (Stomoxys calcitrans) after feeding on viremic blood using a membrane feeder

Ann Sofie Olesena Mette Frimodt Hansenb Thomas Bruun Rasmussena Graham J. Belshama Rene Bødkerb Anette Bøtnera *

a DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4 1 Kalvehave, Denmark
b DTU National Veterinary Institute, Technical University of Denmark, Kemitorvet, building 202, DK-2800 Kgs. Lyngby, Denmark

Using qPCR ASFV DNA was detectable in mouth parts of flies for at least 12 h and remained in head and body samples from the flies for up to three days following feeding. Infectious virus was detected in fly body samples prepared at 3 h and 12 h after feeding.

The presence of infectious ASFV in stable flies following feeding on viremic blood means that such flies are capable of transporting infectious virus. The detection of ASFV DNA in the flies for up to three days following feeding suggests that qPCR analysis of blood-feeding flies during ASFV outbreaks could be a useful method to elucidate the role of these flies in ASFV transmission under field conditions.
Conclusions

• In most of EU countries ASFV steadily expand within WB population; WB are main source and vector of ASF among swine.

• In majority of European countries the number of ASF cases in WB population increased significantly during last year.

• New vectors of ASFV spread in Eastern Europe should be investigated

• There is no way to eradicate ASF among WB without transparent and close cooperation between neighbouring countries
Acknowledgements

EURO for the continuous support
Sildes from the third countries
adopted within presentation were
primarily presented by

Dr Vittorio Guberti,
Dr Paulius Bušauskas,
Dr Mārtiņš Seržants
Dr Petr Šatrán
Thank you